Chain Recurrence Rates and Topological Entropy
نویسنده
چکیده
We investigate the properties of chain recurrent, chain transitive, and chain mixing maps (generalizations of the wellknown notions of non-wandering, topologically transitive, and topologically mixing maps). We describe the structure of chain transitive maps. These notions of recurrence are defined using ε-chains, and the minimal lengths of these ε-chains give a way to measure recurrence time (chain recurrence and chain mixing times). We give upper and lower bounds for these recurrence times and relate the chain mixing time to topological entropy.
منابع مشابه
On the Interplay between Measurable and Topological Dynamics E. Glasner and B. Weiss
Part 1. Analogies 3 1. Poincaré recurrence vs. Birkhoff’s recurrence 3 1.1. Poincaré recurrence theorem and topological recurrence 3 1.2. The existence of Borel cross-sections 4 1.3. Recurrence sequences and Poincaré sequences 5 2. The equivalence of weak mixing and continuous spectrum 7 3. Disjointness: measure vs. topological 10 4. Mild mixing: measure vs. topological 12 5. Distal systems: to...
متن کاملOn the Interplay between Measurable and Topological Dynamics
Part 1. Analogies 3 1. Poincaré recurrence vs. Birkhoff’s recurrence 3 1.1. Poincaré recurrence theorem and topological recurrence 3 1.2. The existence of Borel cross-sections 4 1.3. Recurrence sequences and Poincaré sequences 5 2. The equivalence of weak mixing and continuous spectrum 7 3. Disjointness: measure vs. topological 10 4. Mild mixing: measure vs. topological 12 5. Distal systems: to...
متن کاملDynamically Deened Recurrence Dimension
In this paper, we introduce and characterize the dynamically deened recurrence dimension, a new topological invariant number, following the idea of a previous article 9], but with some modiications and improvements. We study some example of Toeplitz subshifts for which we can show that the recurrence dimension is a topologically invariant number diierent from the topological entropy.
متن کاملEntropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کامل